Valuing EQ-5D using Time Trade-Off in France

Chevalier J^{1}, de Pouvourville G^{2}

1.1 INTRODUCTION

In cost-utility analysis consequences are often in term of QALY (Quality Adjusted Life Year). The time in a given health state is balanced by a coefficient (between 0 to 1) according to the quality given to the state. Using such an indicator supposes two things: knowing the health state of the patient and the utility level associated to this state. In this way, some preference-based indexes have been developed. Due to its simplicity, EQ-5D is one of the most used. This function gives a weight (or score) at each health state and takes in account the patient preference. The EQ-5D questionnaire has been developed and validated in many countries, included France. On the other hand, the utility function has not been elicited in France. In the absence of a set of national population-based utility weights, the EuroQoL group suggests to select a set of utility weights for a population that most closely approximates it. However it is not likely that preferences for different heath states are all-purpose. Utility values should be developed locally, on the basis of the judgments and priorities of local communities. Several studies have backed up this assumption pointing out that utilities function estimated in different countries could present some differences (Rosset et al. 1998; Buckingham et al. 2000). We then propose to compute the French value set for the EQ-5D.
1.2 METHOD

Sampling

A market research company recruited respondents for the French valuation study. Respondents aged over 18 were recruited to be representative of the French population with regard to age, gender and socio-professional group.

[^0]Sample size calculations were based on the estimated number of respondents needed to obtain an estimation of the TTO mean score with a 95% probability that the true mean falls in the interval: [observed mean ± 0.05]. Three hundred respondents were then recruited to value each health state. Thirty interviewers trained by the researchers, conducted the face-to-face interview during the month of December 2008. Respondents received a gift voucher of 15 euros for participation.

Selection of health states

The present study is based on the MVH protocol. However some major modifications have been made. They mainly concerned the first part of the questionnaire (VAS in the MVH) and the number and the pool of states valued.

Unlike other valuation studies the health state "Unconscious" was not value in the French study.

Twenty four health states were selected to be directly valued. As respondents could not be expected to value all 24 health states using the TTO in a single interview (which was what the study was design for), only 17 health states were used with each respondents.

To allow the comparison with other valuation studies, we first chose to value the same 17 states than Macran and Kind (Macran and Kind 1999). These states were also valued in the Dutch study (Lamers et al. 2003; Lamers et al. 2006), in the Japanese one (Ikeda et al. 2000; Tsuchiya et al. 2002) and in the New Zealander study (Devlin et al. 2000) and are presented with a "*" in Table 1.1. They constituted a subset of the 42 health states valued in the MVH study (Dolan 1997). We completed with 7 health states randomly selected from these 42 health states.

The 24 health states were divided in three groups of 8 . Three sets of health states were then constituted with 2 groups. One set of health states contains all the 17 sates of Macran and Kind. Table 1.1 also presents these sets. Hundred and fifty respondents were selected to value each sets of states.

Table 1.1. Health states set assignment.

Set 1		Set 2		Set 3	
21111*		21111*		11211*	
12111*		12111*		11121*	
13311*		13311*		32211*	
11113*	Group 1	11113*	Group 1	11112*	Group 2
11131*	Group 1	11131*	Group 1	11312*	Group 2
22222*		22222*		11133*	
23232*		23232*		32223*	
32313*		32313*		33323*	
11211*		22121		22121	
11121*		21323		21323	
32211*		22122		22122	
11112*	Group 2	22233		22233	
11312*	Group 2	33321	Group 3	33321	Group 3
11133*		13332		13332	
32223*		23313		23313	
33323*		33232		33232	
33333*		33333*		33333*	
+ 11111*		+ 11111*		+ 11111*	
+ Death*		+ Death*		+ Death*	

* Health states forming a part of the 17 ones.
** The state unconscious was removed in the French study.

Structure of the interview

The face-to-face interview consisted of several stages:

- Self-reported health in the five-dimension descriptive system (EQ-5D).
- Self-reported health :
- On a visual analogue scale (VAS) for half of the respondents.
- Using the scoring method for the others.
- Evaluations of hypothetical health states :
- Ranking + VAS of 19 health states $(17+$ dead +11111$)$ for half of the respondents.
- Using the scoring method for the others (on 17 health states).
- TTO evaluations of 17 hypothetical health states.
- Socio-economic background questions.

The data were collected during the month of December 2008 by 30 face-to-face interviewers. The interview was conducted in the respondent's home using Computer Assisted Personal Interviewing. Respondents received a gift voucher of 15 euros for participation.

The whole questionnaire was replicated on the computer's screen.

Exclusion criteria

Exclusion criteria are defined as follows:

- Completely missing TTO data,
- Only 1 or 2 states valued,
- All states given the same value,
- All states valued as worse than dead.

Logical consistency

Hundred thirty six (136) health state pairs can be combined for each respondent $\left(\mathrm{C}_{17}^{2}\right)$ out of which 68 in set 1,62 in set 2 and 69 in set 3 have a logically determined relationship. It means that a state with a less severe rating on a particular dimension, and no more severe ratings on all others can be judged better and have a superior or equal score. For example, 12111 is a better health state than 13111 or 13121.

A great number of inconsistencies could also be seen as an exclusion criterion. We had to arbitrary decide how many inconsistencies are acceptable to construct the value set (Ohinmaa and Sintonen 1998).

Transformation of health states

For states better than dead, TTO value is $\mathrm{v}=\frac{\mathrm{t}}{10}$ where t represents the number of years in full health. For states worse than dead, values are calculated by: $v=\frac{t}{10 t}(-t /(10-t))$. The lowest possible value is -39 . This value occurs when the respondent prefers immediate death to six months in the targeted health state followed by 9.5 years in 11111. As in most valuation (ref. cf. Lamers) study we chose to bound negative value using a monotonic transformation: $\mathrm{v}^{\prime}=\frac{\mathrm{v}}{1 \mathrm{v}}$.

Regression analysis

Variables

For each respondent and each health state, the dependent variable is 1 minus the TTO score given to that health states. It represents the loss of utility associated with the health state.

Following other valuation study, several sets of dummy variables were constructed. They were all considered as continuous variables. Table 1.2 presents these variables.

Table 1.2. Definition of independent variables used in regression analyses.

Variables	Definition
Constant	
Set 1: Dummies to represent the (assumed equal) move between all three le	
MO	0 if mobility is level $1 ; 1$ if level $2 ; 2$ if level 3.
SC	0 if self-care is level $1 ; 1$ if level $2 ; 2$ if level 3.
UA	0 if usual activities is level $1 ; 1$ if level $2 ; 2$ if level 3.
PD	0 if pain/discomfort is level $1 ; 1$ if level $2 ; 2$ if level 3.
AD	0 if anxiety/depression is level $1 ; 1$ if level $2 ; 2$ if level 3.

Set 2: Dummies to represent the move from level 2 to 3. (This allows the effect of the move from level 1 to level 2 to be different from the effect of the move from level 2 to level 3).

MO 2	1 if mobility is level $2 ; 0$ otherwise.
SC 2	1 if self-care is level $2 ; 0$ otherwise.
UA 2	1 if usual activities is level $2 ; 0$ otherwise.
PD 2	1 if pain/discomfort is level $2 ; 0$ otherwise.
AD2	1 if anxiety/depression is level $2 ; 0$ otherwise.

Set 2: Dummies to represent the move from level 2 to 3. (This allows the effect of the move from level 1 to level 2 to be different from the effect of the move from level 2 to level 3).

MO3	1 if mobility is level $3 ; 0$ otherwise.		
SC3	1 if self-care is level $3 ; 0$ otherwise.		
UA3	1 if usual activities is level $3 ; 0$ otherwise.		
PD3	1 if pain/discomfort is level $3 ; 0$ otherwise. AD3		
1 if anxiety/depression is level $3 ; 0$ otherwise.			
I2	Number of dimensions at level 2 beyond the first. I3		
D1	Number of dimensions at level 3 beyond the first.	\quad	1 if any dimension is at level $2 ; 0$ otherwise.
:---			
N2			

As the objective of the study is to estimate one preference-based EuroQol tariff for the whole French population, respondents' characteristics such as age, sex etc. were not included in the model. These variables will be tested in the selected model, results will be presented elsewhere.

Functional form

Figure 1.1. shows that the dependent variable, ie 1-TTO was not normally distributed ${ }^{1}$. It was skewed and bimodal with peaks at 0 and 1 (TTO $=0$ or 1). Usually used transformation, as power or logarithmic ones, were not feasible. Shaw et al. (Shaw et al. 2005) investigated several generalized linear models using various link functions and demonstrated that they consistently yielded poor predictions.

The assumption of normality is a convenience for the purpose of statistical inference. When this assumption is untrue, the estimates of the fixed and random parameters will still be consistent but the standard error estimates cannot be used to obtain confidence intervals or to test significance except in large sample (Goldstein 1999).

Figure 1.1. Functional form of the dependent variable.

1. The two peaks at 0 and 1 can be interpreted as an aversion to value health states worse than death (peak at $1, \mathrm{TTO}=0$) and a wish to have health states equivalent to full health (peak at $0, \mathrm{TTO}=1$).

Model specification

The analysis was conducted at an individual level to make the maximum use of the available data. Since each respondent valued several states, it was expected that a relation exists between its responses. For example, a respondent offering higher or lower value than the average for a particular health state is likely to do that persistently across health states. The variance of the error term in the model would be partially determined by each respondent, which violates one of the key assumptions of Ordinary Least Square (OLS) regression. A random effect (RE) model or a fixed effect (FE) model may then be used as estimation methods to address this problem.

The fixed effect model would be specified as follows:

$$
\mathrm{y}_{\mathrm{ij}}=\beta_{1 \mathrm{i}}+\beta_{2} \mathrm{x}_{2, \mathrm{ij}}+\ldots+\beta_{\mathrm{k}} \mathrm{x}_{\mathrm{k}, \mathrm{ij}}+\varepsilon_{\mathrm{ij}}
$$

Where $\mathrm{i}=1, \ldots, \mathrm{n}$ represents the respondent, $\mathrm{j}=1, \ldots 17$ represents the health states, and $\mathrm{k}=1, . . \mathrm{K}$ represents the independent variable. The random effect model assumes that the intercept $\beta_{1 \mathrm{i}}$ varies across the respondents but not across the health states. There is no probability distribution on the effect inter respondents. The fixed effect model only permits conclusions on the studied population. Results can't be extrapolated to the whole population.

An alternative approach would be the random effect model. It would be specified as:

$$
\begin{aligned}
& \mathrm{y}_{\mathrm{ij}}=\beta_{1}+\beta_{2} \mathrm{x}_{2, \mathrm{ij}}+\ldots+\beta_{\mathrm{k}} \mathrm{x}_{\mathrm{k}, \mathrm{ij}}+\varepsilon_{\mathrm{ij}} \\
& \beta_{1}=\mathrm{a}_{1}+\mathrm{u}_{1 \mathrm{i}}
\end{aligned}
$$

Where a_{1} is an overall intercept, $\varepsilon_{\mathrm{ij}}$ is the traditional error term which represents the deviation between the observed value of the state j for the respondent i and the predicted one, and u_{i} is an error term representing the deviation between the intercept for the $i^{\text {th }}$ respondent and the overall intercept.

A random term could be applied to any of the parameters by defining: $\beta_{k}=a_{k}+u_{k i}$
Following Dolan (Dolan 1997) and others, we estimated mixed model with random intercept. Fourteen different model specifications were compared (Table 1.3).

Table 1.3. Model tested.

```
TTO1=f(MO, SC, UA, PD, AD)
TTO2=f(MO, SC, UA, PD, AD, N2)
TTO3=f(MO, SC, UA, PD, AD, N3)
TTO4=f(MO, SC, UA, PD, AD, N2, N3)
TTO5=f(MO, SC, UA, PD, AD, MO3, SC3, UA3, PD3, AD3)
TTO6=f(MO, SC, UA, PD, AD, MO3, SC3, UA3, PD3, AD3, N2)
TTO7=f(MO, SC, UA, PD, AD, MO3, SC3, UA3, PD3, AD3, N3) (Dolan N3 model)*
TTO8=f(MO, SC, UA, PD, AD, MO3, SC3, UA3, PD3, AD3, N2, N3)
TTO9=f(MO2, SC2, UA2, PD2, AD2, MO3, SC3, UA3, PD3, AD3)
TTO10=f(MO2, SC2, UA2, PD2, AD2, MO3, SC3, UA3, PD3, AD3, N2)
TTO11=f(MO2, SC2, UA2, PD2, AD2, MO3, SC3, UA3, PD3, AD3, N3)
TTO12=f(MO2, SC2, UA2, PD2, AD2, MO3, SC3, UA3, PD3, AD3, N2, N3)
TTO13=f(MO2, SC2, UA2, PD2, AD2, MO3, SC3, UA3, PD3, AD3, D1us, I2, I2Sq, I3, I3Sq) (D1 model) **
TTO14=f(MO2, SC2, UA2, PD2, AD2, MO3, SC3, UA3, PD3, AD3, D1us, I2, I3)
* (Dolan 1997)
** (Shaw, Johnson et al. 2005)
```


Model validation

Models were compared using different goodness of fit measures:

- The Akaike's information criterion (AIC).
- The Mean Absolute Error (MAE).
- The Pearson correlation between the observed and the predicted value.

Mean Absolute Error and Pearson correlation need to be calculated on a sample different from the modelling one. Two approaches were chosen. First, models were calculated on the 17 health states of Macran and Kind (Macran and Kind 1999). Data on the other health states were used as the validation sample.

A second approach consists of bootstraping available data. If we want to conserve the 24 valued data, it is evident that our sample is not big enough for randomly splitted it into a modelling and a validation sample. Therefore, our sample served as a modelling sample and 500 validation samples were constructing through bootstrapping. It consists of a random selection with replacements of respondents from the modelling sample. The sample size for the validation samples was the same as the modelling sample one. For each of these validation samples, the MAE and the Pearson correlation were calculated. The smaller the AIC, the smaller the MAE and the higher this correlation, the better the goodness of fit of the model. The model with the best goodness of fit will determine the French EQ-5D tariff.

We also wanted the model parameter estimates to be statistically significant, with the expected sign, and the expected magnitude (for example, the coefficient for M2, representing the difference between 1 and 2 , is expected to be smaller than the coefficient for M3, representing the difference between 1 and 3). Finally, the estimated values had to be logically consistent. As described elsewhere in the methods part, a state with a less severe rating on a particular dimension and no more severe ratings on all others can be judged better and must have a superior or equal score.

Statistical analyses were performed using SAS software.

1.3 RESULTS

Characteristics of the sample

452 respondents take part in the survey. 9 were excluding as they met at least one exclusion criteria, leaving: 8 due to giving all states the same value and 1 due to valuing all states worse than dead. We note that 6 respondents gave all states but one the same value and 9 respondents gave all states but 2 the same value ...etc. These were not excluded from the analyses.

Table 1.4. Characteristics of the sample.

	French general population*	Sample $(\mathrm{n}=443)$
Women (\%)	51.6	51.7
Years (\%)		
$18-24$	11.5	27.8
$25-34$	16.3	
$35-44$	18.1	35.5
$45-54$	17.4	12.0
$55-64$	15.4	28.5
$65-74$	10.2	36.7
>75	11.1	19.2

* Source: French National Institute for Statistics and Economic Studies. Situation in 2008.

Table 1.4. Characteristics of the sample. (Continued)

| | French general
 population* | Sample
 $(\mathrm{n}=443)$ |
| :--- | :---: | :---: | :---: | :--- |
| socio-professional group (SPG) | | |
| (The unemployed having already worked are classified according to their last trade) | | |

* Source: French National Institute for Statistics and Economic Studies. Situation in 2008.

Direct valuation of health states

Each respondent was asked to value 17 health states using the TTO procedure. Table 1.5 presents the number of states valued. On the 443 non-excluded respondents, 387 (87.4%) valued the whole health states.

Table 1.5. Number of health states valued.

		Number of respondents
Number of states valued:	7	1
	9	3
	11	1
	12	2
	13	5
	14	1
	15	13
	16	30
	17	387

The mean values for the 24 health states directly valued ranged from 0.88 for state 11121 to -0.50 for state 33333 ; the median values from 0.99 to -0.62 for states 11112 and 33333, respectively (see Table 1.6). Figure 1.2 presents a comparison between the French observed TTO values and the MVH ones.

Table 1.6. Mean, median and standard deviation for observed values (after exclusion) and percentage of negative values per state.

CarteEQ5D	N	Mean	Median	STD	Negative values (\%)
11121	296	0.88	0.95	0.26	1.3
11112	296	0.88	0.99	0.26	1.3
11211	295	0.86	0.93	0.23	0.3
21111	293	0.82	0.93	0.35	3.7
12111	292	0.78	0.93	0.39	3.4
11312	295	0.63	0.80	0.43	7.8
11113	289	0.58	0.83	0.54	11.1
22121	291	0.56	0.70	0.50	12.0
11131	289	0.47	0.70	0.59	19.0
22122	291	0.45	0.63	0.54	16.1
11133	294	0.38	0.53	0.58	20.7
13311	291	0.36	0.50	0.57	19.6
21323	292	0.19	0.34	0.61	31.5
22222	286	0.18	0.38	0.65	32.5
32211	292	0.08	0.20	0.64	40.1
13332	288	-0.10	-0.18	0.63	52.1
23313	286	-0.11	-0.03	0.61	50.3
32223	293	-0.17	-0.30	0.60	57.7
23232	286	-0.19	-0.31	0.60	57.3
22233	284	-0.19	-0.30	0.61	57.4
32313	290	-0.23	-0.38	0.63	61.7
33321	283	-0.25	-0.38	0.58	62.2
33232	290	-0.35	-0.50	0.55	72.8
33323	290	-0.39	-0.50	0.54	75.9
33333	430	-0.50	-0.63	0.50	81.9

Figure 1.2. Mean French and MVH TTO observed values for 24 health states.
The mean number of inconsistencies among the full sample is 5.2 (SD: 4.9). There is no statistical difference in this number according to the set of states valued. Ninety percent of the sample exhibit logical inconsistencies (Table 1.7). Table 1.8 reports the mean values for respondents grouped according to their number of inconsistencies. For the whole health states, means for the respondents with only one inconsistency are not statistically different from the ones for respondents with no inconsistency. Before 5 inconsistencies per respondent, means, except one, are still not differents.

Regression analysis

Parameter estimates of the 14 model tested are presented in Table 1.9. The models presenting the best fist statistics, with all parameters being statistically significant are TTO8, TTO11, TTO12. TTO11 is an alternative specification to the N3-model. This model was selected to compute the French societal tariff for the EQ-5D. Estimates for dummies representing the difference between level 1 and level 2 (MO2, SC2, UA2, PD2, AD2) are lower than ones representing the difference between level 1 and level 3 which is the expected magnitude of that coefficient.

The same analysis on the 17 health states of Macran and Kind results in the selection of the same model. Details of this analysis (particularly MAE and Pearson coefficient on the 7 remaining states) will be presented elsewhere.

Final valuation model

Table 1.10 presents the mean TTO observed and predicted values. For 7 health states the residual error exceeds 0.05 .

Table 1.11 presents the full set of French population-based preference weights for the 243 health states defined by the EQ-5D.

Table 1.7. Inconsistencies among the full sample ($n=443$).

Number of inconsistencies	Number of responses	Cumulative sum of responses	Cumulative percentage
0	42	42	9.5
1	54	96	21.7
2	56	152	34.3
3	51	203	45.8
4	34	237	53.5
5	40	277	62.5
6	30	307	69.3
7	25	332	74.9
8	27	359	81.0
9	19	378	85.3
10	12	390	88.0
11	12	402	90.7
12	6	408	92.1
13	9	417	94.1
14	7	424	95.7
15	4	428	96.6
16	2	430	97.1
17	2	432	97.5
18	4	436	98.4
19	2	438	98.9
22	1	439	99.1
23	1	440	99.3
25	1	441	99.5
33	1	442	99.8
39	1	443	100.0

Table 1.8. Mean TTO values according to the number of inconsistencies in the individual responses.

		Mean values of health states according to the number of inconsistencies in the individual responses							
		0	1	2	3	4	5	6	7
11112	N	30	40	32	35	22	32	20	19
	Mean	0.89	0.96	0.97	0.87	0.88	0.85	0.90	0.79
11113	N	25	32	41	29	24	22	18	17
	Mean	0.66	0.67	0.63	0.58	0.64	0.70	0.58	0.59
11121	N	30	40	31	35	22	32	21	19
	Mean	0.95	0.95	0.95	0.91	0.95	0.94	0.81	0.90
11131	N	25	33	41	28	24	23	18	17
	Mean	0.69	0.60	0.47	0.56	0.51	0.29	0.39	0.51
11133	N	30	39	31	35	21	32	21	19
	Mean	0.28	0.42	0.39	0.43	0.51	0.32	0.40	0.24
11211	N	30	40	32	35	22	32	19	19
	Mean	0.91	0.91	0.92	0.86	0.94	0.81	0.73	0.86
11312	N	30	39	32	35	22	32	21	19
	Mean	0.71	0.73	0.76	0.55	0.68	0.53	0.70	0.58
12111	N	25	34	41	29	24	23	18	17
	Mean	0.81	0.94	0.91	0.86	0.82	0.72	0.84	0.78
13311	N	25	33	43	29	24	23	18	17
	Mean	0.38	0.50	0.42	0.40	0.42	0.18	0.19	0.50
13332	N	29	32	37	37	21	23	20	14
	Mean	-0.22	-0.24	0.06	0	-0.19	-0.04	-0.16	-0.07
21111	N	25	34	42	29	24	23	18	17
	Mean	0.92	0.87	0.91	0.85	0.91	0.79	0.85	0.86
21323	N	29	33	36	38	22	25	21	14
	Mean	0.12	0.18	0.38	0.22	0.28	0.25	0.13	0.20
22121	N	29	34	36	38	22	25	19	14
	Mean	0.69	0.71	0.64	0.64	0.69	0.42	0.34	0.54
22122	N	28	33	37	37	22	25	20	14
	Mean	0.57	0.56	0.55	0.52	0.57	0.41	0.37	0.35
22222	N	24	30	41	29	24	23	18	17
	Mean	0.21	0.31	0.34	0.25	0.31	0.01	0.19	0.55
22233	N	27	29	36	38	22	25	20	14
	Mean	-0.38	-0.18	-0.18	-0.14	-0.27	-0.01	-0.27	-0.11
23232	N	25	33	41	28	23	22	18	17
	Mean	-0.16	-0.16	-0.10	-0.13	-0.16	-0.26	-0.37	0.22
23313	N	29	31	34	37	22	24	21	14
	Mean	-0.25	-0.16	0.03	-0.08	-0.09	-0.06	-0.14	0
32211	N	30	37	31	35	22	32	20	19
	Mean	0.35	0.12	0.15	-0.08	0.11	-0.02	-0.05	0.22
32223	N	30	38	32	35	22	32	20	19
	Mean	-0.08	-0.26	-0.18	-0.33	-0.06	-0.21	-0.28	0
32313	N	25	32	42	29	24	23	18	17
	Mean	-0.28	-0.25	-0.17	-0.27	-0.30	-0.33	-0.27	0.24
33232	N	29	33	34	38	22	25	20	14
	Mean	-0.45	-0.42	-0.38	-0.42	-0.31	-0.27	-0.38	-0.22
33321	N	29	32	34	38	22	23	19	13
	Mean	-0.22	-0.41	-0.13	-0.29	-0.30	-0.16	-0.27	0.01
33323	N	30	38	30	35	22	31	20	19
	Mean	-0.48	-0.55	-0.48	-0.52	-0.35	-0.37	-0.47	-0.12
33333				55					25
	Mean	-0.62	-0.64	-0.61	-0.69	-0.56	-0.48	-0.59	-0.36

Table 1.9. Parameter estimates, fit statistics

Effect	TTO1	TTO2	TTO3	TTO4	TTO5	тTO6	$\begin{gathered} \text { TTO7 } \\ \text { N3-model } \end{gathered}$	TT08	тT09	тTO10	TTO11	TTO12	$\begin{gathered} \hline \text { TTO13 } \\ \text { D1-model } \end{gathered}$	TTO14
Intercep	0.047	0.042	0.218	0.245	0.069	0.070	0.187	0.210	0.069	0.070	0.187	0.210		
мо	0.205	0.212	0.206	0.198	0.131	0.130	0.154	0.143		
MO2	0.131	0.130	0.154	0.143	0.202	0.174
MO3	0.126	0.128	0.066	0.079	0.388	0.387	0.373	0.364	0.571	0.532
SC	0.161	0.160	0.165	0.167	0.196	0.195	0.210	0.209		
SC2	0.196	0.195	0.210	0.209	0.247	0.240
SC3	.		.	.	-0.070	-0.069	-0.094	-0.087	0.321	0.322	0.325	0.331	0.530	0.499
UA	0.133	0.134	0.076	0.068	0.207	0.206	0.156	0.142		
UA2	0.207	0.206	0.156	0.142	0.155	0.173
UA3	-0.145	-0.143	-0.124	-0.108	0.270	0.269	0.188	0.176	0.309	0.344
PD	0.154	0.149	0.125	0.127	0.096	0.096	0.109	0.108						
PD2	0.096	0.096	0.110	0.108	0.144	0.140
PD3	0.126	0.128	0.045	0.058	0.318	0.320	0.264	0.275	0.483	0.443
AD	0.123	0.119	0.095	0.096	0.082	0.081	0.088	0.078		
AD2	0.082	0.081	0.088	0.078	0.083	0.110
AD3	0.091	0.093	0.029**	0.052	0.255	0.256	0.204	0.209	0.389	0.378
N2	.	0.039	.	-0.046	.	-0.004**	.	-0.041	.	-0.004**	.	-0.041		
N3	.	.	-0.194	-0.218	.	.	-0.169	-0.178	.	.	${ }^{-0.169}$	-0.178		
12	-0.215	-0.041
${ }^{12 S q}$	0.036	
13	-0.261	-0.178
13Sq	0.0006**	
Dlus	0.063	0.009**
AIC (smaller is better)	9657	9655	9512	9509	9556	9563	9484	9485	9556	9563	9484	9485	9463	9485
MAE	0.071	0.071	0.052	0.050	0.055	0.055	0.043	0.042	0.055	0.055	0.043	0.042		
Pearson correlation	0.980	0.982	0.990	0.991	0.989	0.988	0.993	0.993	0.989	0.988	0.993	0.993		

Table 1.10. Observed and predicted values for 24 health states.

CarteEQ5D	Observed	Predicted	Mean error
11112	0.879	0.894	-0.01
11113	0.581	0.609	-0.03
11121	0.880	0.873	0.01
11131	0.470	0.548	-0.08
11133	0.384	0.344	0.04
11211	0.856	0.826	0.03
11312	0.626	0.538	0.09
12111	0.777	0.772	0.004
13311	0.355	0.300	0.05
13332	-0.104	-0.052	-0.05
21111	0.819	0.828	-0.01
21323	0.190	0.158	0.03
22121	0.555	0.509	0.05
22122	0.454	0.422	0.03
22222	0.182	0.266	-0.08
22233	-0.191	-0.175	-0.02
23232	-0.186	-0.174	-0.01
23313	-0.114	-0.057	-0.06
32211	0.081	0.075	0.01
32223	-0.172	-0.239	0.07
32313	-0.228	-0.161	-0.07
33232	-0.348	-0.393	0.05
33321	-0.246	-0.182	-0.06
33323	-0.388	-0.386	-0.002
33333	-0.502	-0.541	0.04
MAE			0.039

Table 1.11. French Population-based predicted preference weights for 243 health states.

State	Value		State	Value		State	Value			State		Value

1.4 DISCUSSION

Based on representative sample of the general French population aged over 18, we tested several model specified to generate a preference weighting system for the EQ5D in France. The direct valuation of 24 health states was obtained by TTO. We chose not to modify the initial TTO procedure to generate comparative measures. The utility function which will be calculated will thus be an important tool to generate QALYs and CUAs in France and in multinational studies.

However this study is the first to assess an EQ-5D utility function in France, some limitations have to be mentioned. First, a monotonic transformation was applied to the values for states worse than death. Although Lamers (Lamers 2007) showed that the smallest MAE occurred when negative values were linear transformed (i.e. $\mathrm{v}^{\prime}=\frac{\mathrm{v}}{39}$ instead of $\mathrm{v}^{\prime}=\frac{\mathrm{v}}{1 \mathrm{v}}$, see Transformation of health states in the Method part), we chose to conserve the non linear transformation in a comparative way. Actually, she also underlined the fact that modifying the bounding method for negative values at -1 results in different social tariff for EQ-5D. Using the linear transformation as in the US study, should result in smaller numbers of QALYs and probably in smaller QALY gains, especially for more severe diseases.

Second, data presented logical inconsistencies were not excluded from the study. More investigations could be made to determine the impact of these data on the tariff. Actually, in the New Zealander study, Devlin et al. (Devlin, Hansen et al. 2000) showed that computing a tariff admitting all inconsistencies or admitting none or just one results in different function.

Several models were tested in the study and the best according to the fit statistics will be chosen to assess the French tariff for the EQ-5D. We are confident that the model chosen will be the best between all the models tested but we will never know if a better model including other independent variables exists.

Further researches are still in process on the D1 model.

REFERENCES

Buckingham, K., N. Devlin and P. Hansen (2000). Does it matter whose valuations are used to estimate health state tariffs, and which tariffs are used for CUA? . Proceedings of the 18th Plenary Meeting of the EuroQol Group, Pamplona.

Devlin, N. J., P. Hansen, P. Kind and A. H. Williams (2000). The health state preferences and logical inconsistencies of New Zealanders: a tale of two tariffs. Proceedings of the 17 th Plenary Meeting of the EuroQol Group.

Dolan, P. (1997). "Modeling valuations for EuroQol health states." Med Care 35(11): 1095-108.

Goldstein, H. (1999). Multilevel Statistical Models. London.
Ikeda, S., I. Sakai, M. Tamura and A. Tsuchiya (2000). VAS valuations of hypothetical health states using EQ-5D in Japan. Proceedings of the 17th Plenary Meeting of the EuroQol Group.

Lamers, L. M. (2007). "The Transformation of Utilities for Health States Worse Than Death: Consequences for the Estimation of EQ-5D Value Sets." Med Care 45(3): 238-44.

Lamers, L. M., J. McDonnell, P. F. Stalmeier, P. Krabbe and J. Busschbach (2003). A Dutch value set for the EQ-5D : first results. Proceedings of the 20th Plenary Meeting of the EuroQol Group.

Lamers, L. M., J. McDonnell, P. F. Stalmeier, P. F. Krabbe and J. J. Busschbach (2006). "The Dutch tariff: results and arguments for an effective design for national EQ-5D valuation studies." Health Econ 15(10): 1121-32.

Macran, S. and P. Kind (1999). Valuing EQ-5D health states using a modified MVH protocol : preliminary results. Proceedings of the 16th Plenary Meeting of the EuroQol Group.

Ohinmaa, A. and H. Sintonen (1998). Inconsistencies and modelling of the finnish EuroQol (EQ-5D) preference values. Proceedings of the 15th Plenary Meeting of the EuroQol Group.
Rosset, M., X. Badia, M. Herdman and P. Kind (1998). A comparison of english and spanish general population TTO values for EQ-5D health states. Proceedings of the 15th Plenary Meeting of the EuroQol Group, Hanover.

Shaw, J. W., J. A. Johnson and S. J. Coons (2005). "US valuation of the EQ-5D health states: development and testing of the D1 valuation model." Med Care 43(3): 203-20.

Tsuchiya, A., S. Ikeda, N. Ikegami, S. Nishimura, I. Sakai, T. Fukuda, C. Hamashima, A. Hisashige and M. Tamura (2002). "Estimating an EQ-5D population value set: the case of Japan." Health Econ 11(4): 341-53.

[^0]: 1. Institut Gustave Roussy, Villejuif, France
 2. ESSEC business school, Cergy-Pontoise, France
 de Pouvourville G, editor.
 $26^{\text {th }}$ Scientific Plenary Meeting of the EuroQol Group - Proceedings:1-19 © 2011 EuroQol Group
